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a b s t r a c t

This paper addresses the multicommodity capacitated fixed-charge network design problem with
nonbifurcated flows and hop constraints. We present and compare mathematical programming
formulations for this problem and we study different relaxations: Lagrangean relaxations, linear
programming relaxations, and partial relaxations of the integrality constraints. In particular, we show
that the Lagrangean bound obtained by relaxing the flow conservation equations is tighter than the
linear programming relaxation bound. We present computational results on a large set of randomly
generated instances.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let G¼ ðV ; EÞ be a directed graph, where V is the set of nodes
and E is the set of arcs. Let also K be a set of commodities, where
each commodity kAK is defined by an origin node sk, a destination
node tk, and a demand dk to be routed from sk to tk. Each arc eAE
has a capacity ue that satisfies uer∑kAKd

k. For each unit of
commodity k going through arc e, a nonnegative routing cost ce

k

has to be paid. Moreover, a nonnegative design cost fe applies if
there is a positive flow of any commodity on arc e. We consider the
multicommodity capacitated fixed-charge network design problem
with nonbifurcated flows and hop constraints (MCFDH) in which we
want to minimize the sum of routing and design costs, while
satisfying the demands and the capacity constraints. In addition,
each commodity k has to be routed on a single path (nonbifurcated
or unsplittable flows) whose length must not exceed lk. These hop
constraints are useful in the context of reliability and quality of
service in telecommunication and transportation networks, where
limiting the number of arcs can reduce the probability of informa-
tion loss or avoid unacceptable delays. When fe¼0, eAE, and
lk ¼ jEj, kAK , the MCFDH reduces to the multicommodity integral
flow problem, which is NP-hard even if the number of commodities
is two [15]. Thus, the MCFDH is itself NP-hard.

Network design problems with bifurcated (or splittable) flows
have been well studied (see [16], and the references therein).
Problems in which demands cannot be split arise in several
applications in the areas of telecommunication and transportation.
Brockmüller et al. [7] study a capacitated network design problem
with non-linear costs arising in the design of private line net-
works; a similar problem is treated in Dahl et al. [14]. In Gavish
and Altinkemer [17] a non-linear network design problem is
studied, while in Balakrishnan et al. [4] the authors present a
decomposition algorithm for trees. Barnhart et al. [5] present a
column generation model and a branch-and-price-and-cut algo-
rithm for the integer multicommodity flow problem.

Problems involving hop constraints have been studied for
minimum spanning tree problems in Gouveia et al. [23], Dahl
et al. [13], Gouveia and Requejo [24], Gouveia [18,19], and for
Steiner tree problems in Costa et al. [9] and Voß [29], in which
both model the design of centralized telecommunication networks
with minimum cost, as well as in Balakrishnan and Altinkemer [3]
for more general telecommunication network design problems.
Survivability in network design problems, which deals with the
design of networks that can survive arc or node failures, is
investigated in Botton et al. [6], Gouveia et al. [21,22], Alevras
et al. [1,2]. The effect of hop limits on the optimal cost is studied in
Orlowsky and Wessäly [27] for a telecommunication network
design problem. The convex hull of hop-constrained st-paths in a
graph is studied in Dahl [11] and Dahl and Gouveia [12], which
give a complete linear description when the number of hops is not
larger than three, and propose classes of facet-defining in equal-
ities for the general case.
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In this paper, we present three mathematical programming
formulations for the MCFDH: the classical arc-based and path-
based formulations, as well as the hop-indexed model. Different
relaxations of these formulations are studied: Lagrangean relaxa-
tions, linear programming (LP) relaxations, and partial relaxations
of the integrality constraints. We first focus on the hop-indexed
model and study two Lagrangean relaxations, one obtained by
relaxing the capacity constraints and the other by relaxing the
flow conservation constraints. The first Lagrangean relaxation can
be decomposed into jKj hop-constrained shortest path problems.
We show that the hop-indexed formulation for that problem has
the integrality property, which implies that its associated Lagran-
gean dual has the same value as the LP relaxation value of the hop-
indexed model. The second Lagrangean relaxation can be decom-
posed into jEj 0–1 knapsack problems, which do not have the
integrality property. Thus, the value of the Lagrangean dual
associated with this relaxation is greater than, or equal to, the LP
relaxation value (this is a major difference with the bifurcated
case, where a similar Lagrangean relaxation provides the same
bound as the LP relaxation). A theoretical comparison of the LP
relaxations of the formulations is then performed, showing that
the path-based formulation and the hop-indexed formulation have
the same LP relaxation value, which is not worse (and typically
better) than the LP relaxation of the arc-based formulation. We
also compare these relaxations with those obtained by relaxing
the integrality of either the design variables or the flow variables.

The paper is organized as follows. Mathematical programming
formulations of the problem are presented in Section 2. In Section
3, we present the Lagrangean relaxations and compare them to the
LP relaxations and to the partial relaxations of the integrality
constraints. Computational results are presented and analyzed in
Section 4. Section 5 concludes the paper.

2. Problem formulations

This section presents three mathematical programming for-
mulations for the MCFDH, namely, the classical arc-based and
path-based models, as well as the hop-indexed formulation.

2.1. Classical arc-based formulation

This formulation is obtained by adding the hop constraints to
the classical arc-based formulation of the multicommodity capa-
citated fixed-charge network design problem. It uses binary
variables xe

k taking value 1 if the path of commodity k goes
through arc e, and 0 otherwise, as well as binary variables ye
taking value 1 if arc e carries flow for at least one commodity, and
0, otherwise. Given vAV , we denote by ωþ ðvÞ the set of outgoing
arcs from v and by ω� ðvÞ the set of incoming arcs to v.

ðCÞ min ∑
kAK

∑
eAE

dkckex
k
eþ ∑

eAE
f eye

∑
eAωþ ðvÞ

xke� ∑
eAω� ðvÞ

xke ¼
1; v¼ sk

�1; v¼ tk

0; vAV\fsk; tkg
; kAK

8><
>: ð1Þ

∑
kAK

dkxkerueye; eAE ð2Þ

xkerye; eAE; kAK ð3Þ

∑
eAE

xker lk; kAK ð4Þ

xkeAf0;1g; eAE; kAK ð5Þ

yeAf0;1g; eAE: ð6Þ
Constraints (1) are the flow conservation constraints, while (2)

are the capacity constraints. Constraints (3) are redundant strong
linking inequalities, which significantly improve the LP relaxation
of the model. Inequalities (4) represent the hop constraints, which
are valid because the flows are nonbifurcated.

2.2. Path-based formulation

For every kAK , let Pk be the set of paths from sk to tk whose
length is less than or equal to lk. The formulation uses binary
variables ye as in the classical arc-based model, as well as binary
variables xp taking value 1 if pAPk is used to satisfy the demand
for commodity k, and 0 otherwise. Given a path p, we define
aep ¼ 1 if arc e belongs to path p, and 0 otherwise. The cost per unit
of flow on path pAPk is then cp ¼∑eAEaepcke .

ðPÞ min ∑
kAK

∑
pAPk

dkcpxpþ ∑
eAE

f eye

∑
pAPk

xp ¼ 1; kAK ð7Þ

∑
kAK

∑
pAPk

aepd
kxprueye; eAE ð8Þ

∑
pAPk

aepxprye; eAE; kAK ð9Þ

xpAf0;1g; pAPk; kAK ð10Þ

yeAf0;1g; eAE: ð11Þ
Constraints (7) ensure that a single path is selected for each

commodity. Capacity and strong linking constraints are repre-
sented by (8) and (9), respectively. Finally, as a feasible path pAPk

has a length smaller than or equal to lk, the hop constraints are
satisfied by any solution to this formulation.

2.3. Hop-indexed formulation

For every commodity k, every arc e and every possible position
q with 1rqr lk, we define variable xeq

k equal to 1 if arc e appears
in position q in the path from sk to tk and 0, otherwise.

ðIÞ min ∑
kAK

∑
eAE

∑
lk

q ¼ 1
dkckex

k
eqþ ∑

eAE
f eye

∑
eAωþ ðvÞ

∑
lk

q ¼ 1
xkeq� ∑

eAω� ðvÞ
∑
lk

q ¼ 1
xkeq ¼

1; v¼ sk

�1; v¼ tk
; kAK

(
ð12Þ

∑
eAωþ ðvÞ

xkeq� ∑
eAω� ðvÞ

xkeq�1 ¼ 0; kAK; vAV\fsk; tkg; q¼ 2;…; lk

ð13Þ

∑
kAK

∑
lk

q ¼ 1
dkxkeqrueye; eAE ð14Þ

∑
lk

q ¼ 1
xkeqrye; eAE; kAK ð15Þ

xkeqAf0;1g; kAK ; eAE; q¼ 1;…; lk ð16Þ

yeAf0;1g; eAE: ð17Þ
Constraints (14) and (15) are capacity and strong linking

constraints, respectively. Constraints (12) and (13) are the flow
conservation constraints at the origin/destination nodes and at the

B. Thiongane et al. / Computers & Operations Research 53 (2015) 1–82



intermediate nodes, respectively. Moreover, (13) guarantees the
increasing positions of the arcs on any path. These two constraints,
along with the integrality constraints (16), define the so-called
hop-constrained shortest path subproblem (see Section 3.1).

In order to simplify the formulation and to avoid multiple
solutions with the same objective function value, variables
involved in the following constraints are removed:

xkeq ¼ 0; kAK ; eAωþ ðskÞ; q¼ 2;…; lk ð18Þ

xk
elk

¼ 0; kAK ; vAV\ftkg; eAω� ðvÞ ð19Þ

xkeq ¼ 0; kAK ; eAω� ðskÞ [ ωþ ðtkÞ; q¼ 1;…; lk: ð20Þ
Constraints (18) state that the outgoing flow from sk goes through
one arc that has to be in position 1. Without these constraints, the
formulation admits multiple equivalent solutions when there is a
path of length Lo lk that carries the flow between sk and tk. In that
case, without constraints (18), the first arc on such a path could
have a positive flow variable xeq

k associated with any of the
positions q¼1 to lk�Lþ1, thus inducing lk�Lþ1 equivalent
solutions. Constraints (19) state that the destination of an arc in
position lk has to be node tk. Constraints (20) eliminate loops
involving the origin and the destination of any commodity.

Similar hop-indexed formulations, which capture the hop
constraints inside the definition of the variables, have already
been used in Gouveia [20], Voß [29], Gouveia et al. [21,22] and
Costa et al. [9]. In Gouveia [20] and Gouveia et al. [21,22], the hop-
constrained shortest path subproblem is defined in a layered
graph where the length of any optimal path is equal to the hop
constraint value, using self-loops with zero cost at the destination
node if needed. The only difference between this formulation of
the hop-constrained shortest path subproblem and ours is that in
the latter, the length of an optimal path is not necessarily equal to
the hop limit. The two formulations are nonetheless equivalent.

3. Relaxations

We consider two Lagrangean relaxations for the hop-indexed
formulation: the relaxation of the capacity and strong linking
constraints, which we call the hop-constrained shortest path
relaxation, and the relaxation of the flow conservation constraints,
which we call the 0–1 knapsack relaxation. In addition, we study
the relationships between these Lagrangean relaxations, the LP
relaxations and the partial relaxations of the integrality constraints
either on the design variables or on the flow variables. For any
model (X), we denote its optimal value as vðXÞ and its LP relaxation
as (X ).

3.1. Hop-constrained shortest path relaxation

Let us associate Lagrange multipliers γAR
m1þ , m1 ¼ jEj and

δAR
m2þ , m2 ¼ jEJKj, respectively, to the capacity constraints (14)

and to the strong linking constraints (15). When relaxing these
constraints, the Lagrangean subproblem is defined as

ðLRHSP
I ðγ; δÞÞ min ∑

kAK
∑
eAE

∑
lk

q ¼ 1
ðdkðckeþγeÞþδkeÞxkeq

þ ∑
eAE

f e�γeue� ∑
kAK

∑
lk

q ¼ 1
δke

 !
ye

subject to (12), (13), (16) and (17). Problem ðLRHSP
I ðγ; δÞÞ can be

decomposed into two parts: a subproblem in x variables that
separates into jKj hop-constrained shortest path problems with
nonnegative costs (solvable in polynomial time, see [12]) and a
subproblem in y variables that can be solved by looking at the sign

of the cost of each variable. Hence, it is trivial to see that the
subproblem in y variables can be solved by relaxing the integrality
constraints. The subproblem in x variables can also be solved by
relaxing the integrality constraints, as shown in the following
proposition.

Proposition 1. The polytope defined by the following constraints, for
each kAK , is integral:

∑
eAωþ ðvÞ

∑
lk

q ¼ 1
xkeq� ∑

eAω� ðvÞ
∑
lk

q ¼ 1
xkeq ¼

1; v¼ sk

�1; v¼ tk

(
ð21Þ

∑
eAωþ ðvÞ

xkeq� ∑
eAω� ðvÞ

xkeq�1 ¼ 0; vAV\fsk; tkg; q¼ 2;…; lk ð22Þ

xkeqZ0; eAE; q¼ 1;…; lk: ð23Þ

Proof. The constraints are of the form Ax¼b, where b is a vector of
integers and A is a matrix containing coefficients of �1, 0 and þ1.
If each column of A has at most two non-zero entries, one þ1 and
one �1, then the matrix A is totally unimodular [26]. We now
show that each column of A satisfies this property.

1. Let qAf2;…; lkg, e¼ ðu; vÞa ðsk; tkÞ. By (22), the column asso-
ciated with xeq

k contains exactly one þ1, one �1 and rest
are zeros.

2. Let qAf1;…; lkg, e¼ ðsk; vÞ, vatk. The column associated with
xeq
k contains exactly one þ1, by (21), at most one �1, by (22),
and rest are zeros, by (22).

3. Let qAf1;…; lkg, e¼ ðu; tkÞ, uask. The column associated with
xeq
k contains exactly one �1, by (21), at most one þ1, by (22),
and rest are zeros, by (22).

4. Let qAf1;…; lkg, e¼ ðsk; tkÞ. The column associated with xeq
k

contains exactly one þ1 and one �1, by (21), and rest are
zeros, by (22).

Since the right-hand side of each constraint is an integer, the
polytope defined by constraints (21)–(23) is integral [26]. □

This proposition implies that the Lagrangean subproblem can
be solved by relaxing the integrality constraints on all variables,
i.e., ðLRHSP

I ðγ; δÞÞ has the integrality property. Using the following
notation for the Lagrangean dual:

ðLDHSP
I ÞmaxfvðLRHSP

I ðγ; δÞÞ j ðγ;δÞAR
m1 þm2þ Þg:

we thus have, by the Lagrangean duality theory:

Proposition 2. vðLDHSP
I Þ ¼ vðIÞ.

3.2. 0–1 Knapsack relaxation

Let us associate Lagrange multipliers αARn1 , n1 ¼ 2jKj, to (12),
and βARn2 , n2 ¼ ðjV j�2Þ∑kAK ðlk�1Þ, to (13). When relaxing these
constraints, the Lagrangean subproblem is defined as

ðLR01K
I ðα;βÞÞ min ∑

kAK
∑
eAE

∑
lk

q ¼ 1
~ckeqðα;βÞxkeqþ ∑

eAE
f eyeþ ∑

kAK
ð�αk

sk þαk
tk Þ

subject to (14)–(17), where ~ckeqðα;βÞ is defined as

~ckeqðα;βÞ ¼

dkckeqþζs
k

u α
k
sk �ζt

k

v α
k
tk
�ð1�ζt

k

v Þβk
vqþ1; q¼ 1

dkckeqþð1�ζs
k

u Þβk
uq�ζt

k

v α
k
tk
�ð1�ζt

k

v Þβk
vqþ1; q¼ 2;…; lk�1

dkckeqþð1�ζs
k

u Þβk
uq�ζt

k

v α
k
tk
; q¼ lk

8>>>><
>>>>:

with e¼ ðu; vÞ, and ζwu ¼ 1 if u¼w and 0 otherwise. ðLR01K
I ðα;βÞÞ

decomposes by arc. For each arc e, we consider two cases: ye¼0:
we then have xkeq ¼ 0 for all kAK , q¼ 1;…; lk with an objective
function value of 0.
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ye¼1: in this case, the objective function value and the values
of the x variables can be obtained as follows. First, for each kAK ,
we determine qk ¼ arg minq ¼ 1…lk f~c

k
eqðα;βÞg to ensure that con-

straint ∑lk
q ¼ 1x

k
eqr1 is satisfied. Then, we solve the following 0–1

knapsack problem:

ðQeÞ min ∑
kAK

~ckeqk ðα;βÞxkeqk s:t: ∑
kAK

dkxkeqk rue; xkeqk Af0;1g; kAK

( )
:

Thus, for each arc e, we pick the cheapest of the two alternatives,
ye¼0 or ye¼1, and derive an optimal solution out of it.

Note that if we relax the integrality of the y variables, the
Lagrangean subproblem would be solved in the same way, since it
is easy to show that the optimal solution for each arc emust satisfy
ye¼0 or ye¼1. However, because the Lagrangean subproblem
decomposes into jEj 0–1 knapsack problems, ðLR01K

I ðα;βÞÞ does
not have the integrality property. If bifurcated flows were allowed
instead of nonbifurcated flows, the Lagrangean subproblem would
be solved in the same way by considering for each arc e the two
alternatives ye¼0 and ye¼1 (whether or not the integrality of the
y variables is relaxed). The subproblem solved for the case ye¼1
would then be a continuous knapsack problem and the Lagran-
gean subproblem would have the integrality property [10].

The Lagrangean dual associated with this relaxation is defined
as

ðLD01K
I ÞmaxfvðLR01K

I ðα;βÞÞ j ðα;βÞARn1 þn2 Þg:
Since ðLR01K

I ðα;βÞÞ does not have the integrality property, by the
Lagrangean duality theory, we have

Proposition 3. vðLD01K
I ÞZvðIÞ and there exist instances for which

the inequality is strict.

Proof. Fig. 1 shows a capacitated instance with no design costs
and no hop constraints. There are two commodities, each with a
demand of 2, that share the same origin, but have different
destinations. Arcs leaving the origin of each commodity have a
capacity of 3. One of these two arcs has a flow cost of 1, while all
other arcs have no flow costs. The optimal solution to ðIÞ sends
3 units of flow on the arc with no cost leaving the origin and 1 unit
of flow on the arc with flow cost equal to 1. This means that one of
the two commodities has its demand split between two paths,
which implies values of 1/2 for the corresponding x variables. The
optimal value is vðIÞ ¼ 1. By a standard Lagrangean duality,
vðLD01K

I Þ can be computed by optimizing over the polytope defined
by the intersection of the flow conservation equations and the
convex hulls of the 0–1 knapsack set for each arc. Clearly, the
optimal solution to ðIÞ is not feasible for this polytope. The optimal
solution is in fact obtained by sending two units of flow of each
commodity on each of the arcs from the origin, which is also the
optimal solution to I. The optimal value is vðLD01K Þ ¼ 2. Thus, in
this case, vðIÞ ¼ 1o2¼ vðLD01K

I Þ. □

3.3. Linear programming relaxations

The following proposition establishes a comparison between
the LP relaxations of the three formulations presented in Section 2.

Proposition 4. vðC ÞrvðP Þ ¼ vðIÞ and there exist instances for which
the inequality is strict.

Proof. vðC ÞrvðPÞ: To prove this inequality, we consider the
Lagrangean relaxation of constraints (2) and (3) in formulation
ðCÞ. By the Lagrangean duality theory, we have vðC ÞrvðLDHSP

C Þ,
where ðLDHSP

C Þ is the Lagrangean dual derived from this relaxation.
In the same way as for the hop-constrained shortest path relaxa-
tion presented in Section 3.1, the Lagrangean subproblem decom-
poses into two parts: a subproblem in x variables that separates

into jKj hop-constrained shortest path problems with nonnegative
costs and a subproblem in y variables that can be solved by looking
at the sign of the cost of each variable. Thus, using the classical
Dantzig–Wolfe reformulation approach for the Lagrangean dual
ðLDHSP

C Þ, we can express any point in the convex hull of solutions to
the Lagrangean subproblem using jKj convex combinations of the
extreme points of the convex hull of solutions to the following
constraints, for each kAK:

∑
eAωþ ðvÞ

xke� ∑
eAω� ðvÞ

xke ¼
1; v¼ sk

�1; v¼ tk

0; vAV \fsk; tkg

8><
>: ð24Þ

∑
eAE

xker lk ð25Þ

xkeAf0;1g; eAE: ð26Þ
Each of these extreme points corresponds to a hop-constrained
path pAPk. Thus, if we denote any such extreme point as ξðpÞ and
its convex combination weight as the variable θðpÞ, pAPk, we can
express each solution xk to the convex hull of (24)–(26) with the
formula xke ¼∑pAPkθðpÞξeðpÞ. The Dantzig–Wolfe reformulation of
ðLDHSP

C Þ can then be written as follows:

ðLDHSP
C Þ min ∑

kAK
∑
eAE

dkcke ∑
pAPk

θðpÞξeðpÞ
 !

þ ∑
eAE

f eye

∑
kAK

dk ∑
pAPk

θðpÞξeðpÞrueye; eAE ð27Þ

∑
pAPk

θðpÞξeðpÞrye; eAE; kAK ð28Þ

∑
pAPk

θðpÞ ¼ 1; kAK ð29Þ

θðpÞZ0; kAK; pAPk ð30Þ

yeA ½0;1�; eAE: ð31Þ
We remark that ξeðpÞ ¼ aep, for each arc eAE, commodity kAK and
path pAPk. If we let xp ¼ θðpÞ, this reformulation of ðLDHSP

C Þ is
precisely ðP Þ. Thus, we have

vðC ÞrvðLDHSP
C Þ ¼ vðPÞ:

Fig. 1. Instance showing that vðI Þ ¼ 1o2¼ vðLD01K Þ.
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Now, consider the graph defined in Fig. 2 with K ¼ fkg, flow costs
ce1 ¼ c40, cei ¼ c=4 for i¼ 2;…;5, and design costs f e1 ¼ f 40,
f ei ¼ f =4�ϵ where ϵ40. Suppose that uei ¼ dk ¼ 1 and lk¼3. Thus,
an optimal solution to ðP Þ sends one unit of flow on the path
defined by arc e1 and

vðIÞ ¼ cþ f :

However, an optimal solution to ðC Þ is xke1 ¼ ye1 ¼ 1=3,
xkei ¼ yei ¼ 2=3, i¼ 2;…;5 and its optimal value is

vðC Þ ¼ cþ f �8ϵ=3¼ vðIÞ�8ϵ=3:

vðP Þ ¼ vðIÞ: To prove this result, we follow a similar approach as
above, by considering the Lagrangean relaxation of (14) and (15) in
formulation ðIÞ. By Proposition 2, we have vðLDHSP

I Þ ¼ vðIÞ. Using again
the classical Dantzig–Wolfe reformulation approach for the Lagran-
gean dual ðLDHSP

I Þ, we can express any point in the convex hull of
solutions to the Lagrangean subproblem using jKj convex combina-
tions of the extreme points of the integral polytope defined by
constraints (21)–(23). Each of these extreme points corresponds to a
hop-constrained path pAPk. Thus, if we denote any such extreme
point as ξðpÞ and its convex combination weight as the variable θðpÞ,
pAPk, we can express each solution xk to (21)–(23) with the formula
xkeq ¼∑pAPkθðpÞξeqðpÞ. The Dantzig–Wolfe reformulation of ðLDHSP

I Þ
can then be written as follows:

ðLDHSP
I Þ min ∑

kAK
∑
eAE

∑
lk

q ¼ 1
dkcke ∑

pAPk

θðpÞξeqðpÞ
 !

þ ∑
eAE

f eye

∑
kAK

∑
lk

q ¼ 1
∑

pAPk

dkθðpÞξeqðpÞrueye; eAE ð32Þ

∑
lk

q ¼ 1
∑

pAPk
θðpÞξeqðpÞrye; eAE; kAK ð33Þ

∑
pAPk

θðpÞ ¼ 1; kAK ð34Þ

θðpÞZ0; kAK ; pAPk ð35Þ

yeA ½0;1�; eAE: ð36Þ
We remark that∑lk

q ¼ 1ξeqðpÞ ¼ aep, for each arc eAE, commodity kAK
and path pAPk. If we let xp ¼ θðpÞ, this reformulation of ðLDHSP

I Þ is
precisely ðP Þ. Thus, we have

vðIÞ ¼ vðLDHSP
I Þ ¼ vðP Þ: □

Note that, without hop constraints, it is easy to show that
vðC Þ ¼ vðP Þ. This follows from the same proof technique as above,
by observing that, without constraints (25), the shortest path
subproblem for each kAK , defined by (24) and (26), has the
integrality property, and thus, vðC Þ ¼ vðLDHSP

C Þ. The equivalence
between the LP relaxations of the path-based and hop-indexed
formulations has been proved for the hop-constrained minimum
spanning tree problem in Dahl et al. [13]. The next section focuses

on improving the lower bound vðIÞ by studying partial relaxations
of the integrality constraints.

3.4. Partial relaxations of integrality constraints

In the LP relaxation of ðIÞ, both x and y variables can be
fractional, i.e., ðx; yÞA ½0;1�M � ½0;1�jEj, where M ¼ jEj∑kAK l

k. When
x is fractional, the flows can be bifurcated, i.e., several paths can be
used to satisfy the demand for any commodity. When y is
fractional, it is possible that only a fraction of the design cost
associated with any arc is taken into account in an optimal
solution in which there is flow on that arc. One possibility to
improve the lower bound vðIÞ is to relax the integrality constraints
only on a subset of the variables, either the x variables or the y
variables, but not on both, as in ðIÞ.

First, we consider the relaxation of the integrality of the y
variables, denoted ðIyÞ. We then have the following result:

Proposition 5. vðIyÞ ¼ vðIÞ.

Proof. Since the design costs are nonnegative and the y variables
appear only in the capacity and strong linking constraints, there is
an optimal solution to ðIyÞ that satisfies, for each arc e:

ye ¼max ∑
kAK

∑
lk

q ¼ 1
dkxkeq

 !
ue;max

kAK
∑
lk

q ¼ 1
xkeq

( )
g:

,(

Now, since the x variables are binary and ∑lk
q ¼ 1x

k
eqr1, we must have

∑lk
q ¼ 1x

k
eqAf0;1g. Moreover, since ð∑kAK∑lk

q ¼ 1d
kxkeqÞ=uer1 and

ð∑kAK∑lk
q ¼ 1d

kxkeqÞ=ue ¼ 0 if and only if maxkAKf∑lk
q ¼ 1x

k
eqg ¼ 0, it

follows that yeAf0;1g, i.e., there is an optimal solution to ðIyÞ that is
also an optimal solution to I. □

Thus, when relaxing the integrality of the y variables, we
obtain, in fact, a model that solves the MCFDH. It is easy to see
that the same result applies not only to the hop-indexed formula-
tion ðIÞ, but also to the other models ðCÞ and ðPÞ.

Second, we consider the relaxation of the integrality of the x
variables, denoted ðIxÞ. We then have the following result:

Proposition 6. vðIxÞ ¼ vðIÞ for any uncapacitated instance (i.e.,
ue ¼∑kAKd

k, eAE).

Proof. Let y be the values assigned to the y variables in an optimal
solution to ðIxÞ. We can obtain the optimal values x to the x
variables by solving the LP relaxation of the hop-indexed formula-
tion of jKj hop-constrained shortest path problems. As a conse-
quence of Proposition 1, this LP relaxation provides, for each
commodity k, a set of paths from sk to tk with a length not
exceeding lk. Hence, ðx; yÞ is also an optimal solution to ðIÞ. □

When there are capacities, we have in general vðIÞrvðIxÞrvðIÞ.
It is interesting to know how the Lagrangean bound vðLD01K

I Þ
compares with vðIxÞ, since both are never worse than vðIÞ.

Proposition 7. There is no dominance between vðIxÞ and vðLD01K
I Þ.

Proof. Fig. 3 shows an uncapacitated instance with no hop con-
straints and no flow costs. There are three commodities, each with a
demand of 1, that share the same origin, but have different destina-
tions. Arcs leaving the origin of each commodity have a design
cost equal to 1, while all other arcs have no design costs. Since the
instance is uncapacitated, ðLR01K

I Þ has the integrality property and
vðLD01K

I Þ ¼ vðIÞ. In addition, by Proposition 6, vðIxÞ ¼ vðIÞ. The optimal
solution to ðIÞ assigns the value 1/2 to all (possibly non-zero) variables
with an optimal value vðIÞ ¼ 3=2. The optimal solution to ðIÞ consists
in choosing two of the three arcs leaving the origin of each commodity
and to send three units of flow on these arcs, one for each commodity.

Fig. 2. Instance showing that vðC ÞovðP Þ.
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The optimal value is vðIÞ ¼ 2. Thus, for this instance, we have
vðLD01K

I Þ ¼ vðIÞ ¼ 3=2o2¼ vðIÞ ¼ vðIxÞ. This example is an adaptation
of Gomory's example (reported in [25]) of a fractional instance to the
so-called strong formulation of the uncapacitated facility location
problem.

Consider now the instance illustrated in Fig. 1 (see proof of
Proposition 3). Since there are no design costs, ðIxÞ is the same as ðIÞ
for this instance. Hence, we have vðIxÞ ¼ vðIÞ ¼ 1o 2¼ vðLD01K

I Þ. □

3.5. Summary of bound relationships

The following propositions summarize the relationships
between the different lower bounds derived so far, including the
LP relaxation bounds of the different formulations of the MCFDH,
but with an emphasis on the stronger lower bounds derived from
the hop-indexed model.

Proposition 8. In the capacitated and nonbifurcated case,

vðIÞ ¼ vðIyÞZmax fvðIxÞ; vðLD01K
I ÞgZmin fvðIxÞ; vðLD01K

I ÞgZvðLDHSP
I Þ

¼ vðIÞ
¼ vðP ÞZvðC Þ:

Proof. Immediate from Propositions 2–5, 7. □

Proposition 9. In the uncapacitated and nonbifurcated case,

vðIÞ ¼ vðIyÞ
¼ vðIxÞZvðLD01K

I Þ
¼ vðLDHSP

I Þ
¼ vðIÞ
¼ vðP ÞZvðC Þ:

Proof. vðIÞ ¼ vðIxÞ from Proposition 6. Moreover, Propositions 2, 4 and
5 hold. Finally, as the Lagrangean subproblem associated with ðLD01K Þ
has the integrality property, we have vðLD01K

I Þ ¼ ðIÞ. □

Proposition 10. In the bifurcated (capacitated or uncapacitated)
case,

vðIÞZvðLD01K
I Þ ¼ vðLDHSP

I Þ ¼ vðIÞ ¼ vðP Þ:

Proof. The LP relaxations of ðIÞ and ðPÞ are the same whether the
flows are bifurcated or not, so Proposition 4 holds for these
formulations. We have removed ðCÞ from this comparison, as it is
no more a valid model in the presence of hop constraints if the
flows are bifurcated. Also, Proposition 2 obviously holds when the
flows are bifurcated. As discussed in Section 3.2, vðLD01K

I Þ ¼ vðIÞ is
verified in the bifurcated and capacitated case, and the relation
remains obviously valid in the bifurcated and uncapacitated
case. □

This picture of lower bound comparisons among the different
relaxations is completed by the observation made at the end of
Section 3.3: without hop constraints, we have vðC Þ ¼ vðP Þ (and ðCÞ
is then a valid model, whether the flows are bifurcated or not).
Thus, in the case where hop constraints are not active, all the
bound comparisons established in the three propositions above
hold with this single modification.

4. Computational results

The purpose of our computational experiments is to compare in
practice (1) the LP relaxation values of the hop-indexed and
classical arc-based formulations, vðIÞ and vðC Þ; (2) the LP relaxa-
tion and the Lagrangean dual bounds, vðIÞ and vðLD01K

I Þ; (3) the
Lagrangean dual bound and the value of the partial relaxation of
the integrality constraints on the flow variables, vðLD01K

I Þ and vðIxÞ.
We have performed a series of experiments on 137 instances
among those used by Crainic et al. [10]. The hop constraint
parameter lk of a commodity k has been generated according to
κkþ1þrk, where rk is uniformly distributed over the interval
½0; jV j=4� and κk denotes the length of a shortest path from sk to
tk. The characteristics of the instances are described in Table 1.

All bounds are computed with CPLEX 12.3, except vðLD01K
I Þ,

which is obtained with the following subgradient method. Starting
from an initial multiplier u0, the method generates a sequence of
multipliers using the formula:

ulþ1 ¼ ul�λl
dl

Jdl J
:

Here, λl is the step size and dl is the step direction. We consider the
modified Camerini–Fratta–Maffioli rule [8]:

dl ¼ σlþμldl�1;

where μl ¼ Jσl J=Jdl�1 J if the scalar product 〈σl; dl�1
〉 is negative,

and μl ¼ 0 otherwise. The step size is computed as

λl ¼ τl
vl�vðLR01K

I ðulÞÞ
Jdl J

;

where 0oτlo2, vl is an estimation of the optimal value of the
MCFDH and vðLR01K

I ðulÞÞ denotes the value of the Lagrangean
relaxation problem with the current Lagrange multipliers ul. In
our experimentation, vl is set to 2vn, where vn is the best
Lagrangean bound obtained so far. The value of τl is adjusted as
follows: it is multiplied by a factor ρo1 if, after 10 iterations, there
is no improvement, but its minimum value is set to 10�3. The
algorithm stops after 1000 iterations or when the relative distance
between ulþ1 and ul is lower than 10�7. The 0–1 knapsack
problem arising in the Lagrangean subproblem is solved using
the hybrid code of Plateau and Elkihel [28], which combines
dynamic programming and enumeration, shown to be efficient
for difficult instances. The maximum size of the subproblem being

Fig. 3. Instance showing that vðLD01K Þ ¼ vðI Þ ¼ 3=2o2¼ vðIÞ ¼ vðIxÞ.
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solved by dynamic programming has been set to 50. The code has
been implemented in Cþþ , using the gþþ compiler and all
experiments have been performed on a Linux machine, operating
at 3.07 GHz.

The computational results are presented in Table 2, which
displays

� T(X), the average computing time in seconds for model X,
where X represents one of the five formulations: (C ), (I),

(LD01K
I ), (Ix) and (I); note that formulation (I) has been used

instead of (Iy), as it gave slightly faster computing times.
� G(X), the average relative gap (in percentage) between model X

(X different from C ) and formulation C ; a positive value means
that (X) is better than (C ).

From the results shown in Table 2, we can draw the following
observations:

� When comparing (I) and (C ), we observe that the average gap
G(I) obtained, although always positive, is never greater than
2.26% (problem C2), and that the computing time for (C ) is up
to three times better.

� The Lagrangean bound vðLD01K
I Þ is consistently better than vðIÞ,

the lower bound obtained from the hop-indexed LP relaxation.
In particular, we observe that G(I) is lower than or equal to
2.26%, while G(LD01K ) is always greater than this percentage,
except for the last three sets of instances, C6, C7 and C8. The
average gap difference between (LD01K

I ) and (I) reaches up to
13% (for R1 instances), although the average gap difference is
less than or equal to 10%.

� The average computing time for the hop-indexed LP relaxation
(I) is most of the time smaller than that for the subgradient
method to compute vðLD01K

I Þ. Indeed, it takes less than 1 s for
(I) to solve 11 of the sets of problems, while the subgradient
method took up to 18 s for the same sets. For larger problems
such as R17 and C8, however, the Lagrangean dual solution
time dominates that of (I), performing better, with relative
improvements of 39% and 55%, respectively.

� For 17 problems out of the 25, (LD01K
I ) generated lower bound

values that are greater than or equal to the bound values
obtained by solving the mixed-integer relaxation (Ix).� Solving the mixed-integer formulations takes much more time
than solving the Lagrangean dual formulation, except for small
instances. The subgradient method never took more than 9 min
to solve any of the sets of problems, while the computing times
have been restricted to 2 h, and sometimes to 12 h, for both (Ix)

Table 1
Characteristics of the 137 instances used.

Problem #Instances #Nodes #Arcs #Commodities

R1 6 10 35 10
R2 2 10 35 25
R3 6 10 60 10
R4 3 10 60 25
R5 7 10 60 50
R6 6 10 82 10
R7 6 10 83 25
R8 6 10 83 50
R9 5 20 120 40
R10 6 20 120 100
R11 5 20 120 200
R12 6 20 220 40
R13 9 20 220 100
R14 6 20 220 200
R15 9 20 314 40
R16 9 20 318 100
R17 9 20 315 200
C1 3 20 230 40
C2 4 20 230 200
C3 4 20 300 40
C4 4 20 300 200
C5 4 30 520 100
C6 4 30 520 400
C7 4 30 700 100
C8 4 30 700 400

Table 2
Comparison between the different lower bounds over 137 instances.

Problem T(C ) G(I ) T(I ) G(LD01K
I ) T(LD01K

I ) G(Ix) T(Ix) G(I) T(I)

R1 0.00 0.05 0.00 13.60 0.47 3.47 0.04n 14.21 0.03n

R2 0.00 0.03 0.00 9.53 1.30 1.00 0.06n 9.61 0.06n

R3 0.00 1.28 0.00 10.44 0.50 3.64 0.04n 10.50 0.04n

R4 0.01 0.73 0.01 2.95 2.00 2.22 0.15n 3.42 0.13n

R5 0.07 0.76 0.08 6.05 4.25 3.57 8.75n 8.27 7.58n

R6 0.00 0.19 0.01 10.10 0.71 4.11 0.06n 10.22 0.06n

R7 0.01 0.67 0.02 3.60 2.05 2.28 0.33n 3.85 0.18n

R8 0.12 1.74 0.12 8.19 5.23 4.38 8.65n 10.35 25.93n

R9 0.17 1.49 0.21 8.77 10.75 5.58 56.05n 10.94 19.54n

R10 2.04 1.51 3.32 5.32 27.40 4.65 2096.03n 9.30 5065.66n

R11 6.65 0.38 14.27 3.42 57.90 2.84 2992.89n 9.66 7178.70n

R12 0.57 2.01 0.83 3.77 17.66 5.64 935.11n 6.27 395.69n

R13 6.58 1.27 9.41 10.87 42.63 5.42 5027.53n 14.89 4162.07n

R14 46.36 1.77 99.12 2.58 90.29 7.21 5018.21n 13.70 6218.10n

R15 1.13 0.64 1.69 9.55 22.38 4.68 2637.46n 11.16 67.90n

R16 14.41 1.68 22.67 6.84 58.39 6.36 5302.25n 13.69 5649.41n

R17 99.72 1.34 203.31 5.59 123.60 11.35 6477.25n 15.19 7179.23n

C1 0.04 0.25 0.10 5.49 18.77 1.12 6.15n 5.53 2.13n

C2 36.84 2.26 53.23 2.28 100.85 6.63 7179.99n 9.07 7178.90n

C3 10.61 0.54 16.77 3.51 41.00 2.22 1801.73n 6.27 1797.15n

C4 23.18 0.55 49.68 2.73 94.79 3.39 5385.87n 7.41 5385.17n

C5 16.84 0.93 42.64 2.63 124.21 3.56 5562.18n 6.36 4150.08n

C6 187.85 0.45 582.68 1.38 443.71 2.63 34,105.48nn 5.35 34,099.42nn

C7 90.36 0.46 252.05 2.20 253.19 2.15 32,398.15nn 4.50 22,458.45nn

C8 486.68 0.39 1245.42 1.44 550.73 4.07 42,723.62nn 6.58 40,886.88nn

n Computing time limited to 2 h.
nn Computing time limited to 12 h.
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and (I). Note that these time limits have been reached for both
formulations in many instances. We also observe that no
formulation between (Ix) and (I) is clearly faster than the other.

5. Conclusion

In this paper, we have presented several formulations for the
MCFDH. We have established relationships between different
lower bounds in the bifurcated or nonbifurcated cases and in the
capacitated or uncapacitated cases. The mixed-integer formulation
obtained by relaxing the integrality of the design variables is
equivalent to solving the MCFDH. There is no dominance between
the mixed-integer relaxation derived from the problem with
bifurcated flows and the Lagrangean relaxation of the flow con-
straints of the hop-indexed formulation. However, our computa-
tional experiments have shown that the Lagrangean bound is
better for most instances, while also being faster to compute. The
Lagrangean bound is also better in theory and in practice than the
hop-indexed LP relaxation bound, although it generally takes more
time to compute. Overall, the Lagrangean relaxation method
seems to offer a good tradeoff between computing time and
bound quality. Further investigations involving combinations of
this Lagrangean relaxation with primal heuristics would be of
interest.
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